ASSIGNMENT

CLASS XI
 PERMUTATION AND COMBINATION

Q1. If ${ }^{n} C_{r}+{ }^{n} C_{r+1}={ }^{n+1} C_{x}$, then $x=$
(a) r
(b) $r-1(c) n$
(d) $r+1$

Q2 There are 12 points in plane. The number of the straight lines joining any two of them when 3 of them are collinear, is
(a) 62
(b) $\quad 63(c) 64$
(d) 65

Q3. There are 10 points in a plane and 4 of them are collinear. The number of straight lines joining any two of them is
(a) 45
(b) 40(c) 39
(d) 38

Q4. If $C_{0}+C_{1}+C_{2}+\ldots \ldots \ldots . . C_{n}=256$, then ${ }^{2 n} C_{2}$ is equal to
(a) 56
(b) $\quad 120(\mathrm{c}) 28$
(d) 91

Q5 The number of diagonals that can be drawn by joining the vertices of an octagon is
(a) 20
(b) 28(c) 8
(d) 16

Q6 The term without x in the expansion of $\left(2 x-\frac{1}{2 x^{2}}\right)^{12}$ is
(a) 495
(b) -495(c)
-7920
(d) 7920

Q7 If in the expansion of $(1+y)^{\text {n }}$, the coefficients of $5^{\text {th }}, 6^{\text {th }}$ and $7^{\text {th }}$ terms are in A.P then n is equal to
(a) 7,11
(b) $7,14(\mathrm{c})$
8,16
(d) None of these

Q8 The coefficient of x^{4} in $\left(\frac{x}{2}-\frac{3}{x^{2}}\right)^{10}$ is
(a) $\frac{405}{256}$
(b) $\frac{504}{259}$ (c) $\quad \frac{450}{263}$
(d) None of these

Q9 if $r^{\text {th }}$ term is the middle term in the expansion of $\left(x^{2}-\frac{1}{2 x}\right)^{20}$,then $(r+3)^{\text {th }}$ term is
(a) ${ }^{20} C_{14}\left(\frac{x}{2^{14}}\right)$
(b) ${ }^{20} C_{12} x x^{2} 2^{-12}$
(c) $-{ }^{20} C_{7} x \cdot 2^{-13}(\mathrm{~d})$ None of these

Q10 In n A.M.'s are introduced between 3 and 17 such that the ratio of the last mean to the first mean is $3: 1$, then the value of n is
(a) 6
(b) 8 (c) 4
(d) None of these

Q11 92. How many 8's are there between 1 to 1000 ?
(a) 301
(b) 300
(c) 299
(d) 350

Q12. How many numbers lying between 100 and 1000 can be formed with the digits 0 , $1,2,3,4,5$, if the repetition of the digits is not allowed?
(a) 90
(b) 50
(c) 40
(d) 100

Q13. The number of ways youcan find to pack 9 different books into five parcels if four of the parcels must contain two books each, is
(a) 945
(b) ${ }^{9} C_{2} \times{ }^{7} C_{2} \times{ }^{5} C_{2} \times{ }^{3} C_{2}$
(c) ${ }^{9} C_{2} \times{ }^{7} C_{2} \times{ }^{5} C_{2} \times{ }^{3} C_{2} \times 5$!
(d) None of these

Q14 The number of permutations of letters a, b, c, d, e, f, g so that neither the pattern beg nor cad appears is
(a) $\frac{7!}{3!3!}$
(b) $\frac{7!}{2!3!3!}$
(c) 4806
(d) None of these

Q15 If eleven members of a committee sit at a round table so that the President and Secretary always sit together, then the number of arrangements is
(a) $10!\times 2$
(b) $10!$
(c) $9!\times 2$
(d) $11!\times 2$!

Q16 In how many ways can 5 boys and 5 girls sit in a circle so that no two boys sit together?
(a) $5!\times 5$!
(b) $4!\times 5$!
(c) $\frac{5!\times 5!}{2}$
(d) $\frac{(4!) \times(4!)}{2!}$

Q17 The number of arrangements that can be made taking 4 letters, at a time, out of the letters of the word PASSPORT is
(a) 606
(b) 626
(c) 666
(d) 686

Q18 The number of natural numbers smaller then 10^{4} of which all the digits are distinct are
(a) 5000
(b) 5200
(c) 5300
(d) 5274

Q19 92. How many 8's are there between 1 to 1000 ?
(a) 301
(b) 300
(c) 299
(d) 350

Q20 How many numbers lying between 100 and 1000 can be formed with the digits 0, $1,2,3,4,5$, if the repetition of the digits is not allowed?
(a) 90
(b) 50
(c) 40
(d) 100

Q21 The number of ways youcan find to pack 9 different books into five parcels if four of the parcels must contain two books each, is
(a) 945
(b) ${ }^{9} C_{2} \times{ }^{7} C_{2} \times{ }^{5} C_{2} \times{ }^{3} C_{2}$
(c) ${ }^{9} C_{2} \times{ }^{7} C_{2} \times{ }^{5} C_{2} \times{ }^{3} C_{2} \times 5$!
(d) None of these

Q22 The number of permutations of letters a, b, c, d, e, f, g so that neither the pattern beg nor cad appears is
(a) $\frac{7!}{3!3!}$
(b) $\frac{7!}{2!3!3!}$
(c) 4806
(d) None of these

Q23 If eleven members of a committee sit at a round table so that the President and Secretary always sit together, then the number of arrangements is
(a) $10!\times 2$
(b) $10!$
(c) $9!\times 2$
(d) $11!\times 2$!

Q24 In how many ways can 5 boys and 5 girls sit in a circle so that no two boys sit together?
(a) 5 ! $\times 5$!
(b) 4 ! $\times 5$!
(c) $\frac{5!\times 5!}{2}$
(d) $\frac{(4!) \times(4!)}{2!}$

Q25 The number of arrangements that can be made taking 4 letters, at a time, out othe letters of the word PASSPORT is
(a) 606
(b) 626
(c) 666
(d) 686

Q26 The number of natural numbers smaller then 10^{4} of which all the digits are distinct are
(a) 5000
(b) 5200
(c) 5300
(d) 5274

