ASSIGNMENT

CLASS XI

PERMUTATION AND COMBINATION

- If ${}^{n}C_{r} + {}^{n}C_{r+1} = {}^{n+1}C_{x}$, then x =Q1.
 - (a) r
 - r-1(c) n (b) (d) r+1
- Q2 There are 12 points in plane. The number of the straight lines joining any two of them when 3 of them are collinear, is
 - (a) 62 (b) 63(c) 64 (d) 65
- Q3. There are 10 points in a plane and 4 of them are collinear. The number of straight lines joining any two of them is
 - 45 40(c) 39 (a) (b) (d) 38
- $C_0 + C_1 + C_2 + \dots + C_n = 256$, then ²ⁿ C_2 is equal to Q4. lf
 - (a) 56 (b) 120(c) 28 (d) 91
- Q5 The number of diagonals that can be drawn by joining the vertices of an octagon is
 - (a) 20 28(c) 8 (d) 16 (b)
- The term without x in the expansion of $\left(2x \frac{1}{2x^2}\right)^{12}$ is Q6
 - -495(c) -7920 (d) 495 7920 (a) (b)
- If in the expansion of (1+y)ⁿ, the coefficients of 5th, 6th and 7th terms are in A.P Q7 then n is equal to
 - 7, 11 (b) 7,14(c) None of these (a) 8,16 (d)
- The coefficient of $x^4 in \left(\frac{x}{2} \frac{3}{x^2}\right)^{10} is$ Q8
 - $\frac{405}{256}$ (b) $\frac{504}{259}$ (c) $\frac{450}{263}$ (a) (d) None of these

Q9	if r^{th} term is the middle term in the expansion of $\left(x^2 - \frac{1}{2x}\right)^{20}$, then $(r+3)^{th}$ term is										
	(a)	$^{20}C_{14}$	$\left(\frac{x}{2^{14}}\right)$	(b)	$^{20}C_{12}$	$_{2}x^{2}2^{-12}$	(c)	$-{}^{20}C_7x.2$	2 ⁻¹³ (d)Non	e of these	
Q10	In n A.M.'s are introduced between 3 and 17 such that the ratio of the last mean								mean		
	to the first mean is 3:1, then the value of n is										
	(a) 6 (b) 8(c) 4 (d) None of these										
Q11	92. (a) (c)	How r 301 299				betweeı			300 350		
Q12.		-						000 can t allowed (b) (d)		d with the di	gits 0,
Q13.	The number of ways youcan find to pack 9 different books into five parcels if four of the parcels must contain two books each, is								if four		
	(a)	945						(b)	${}^{9}C_{2} \times {}^{7}C_{2} \times$	$<^5C_2\times^3C_2$	
	(c)	${}^9C_2 \times^7$	$C_2 \times^5 C_2$	$_{2}\times^{3}C_{2}\times$	< 5!			(d)	None of t	these	
Q14 The number of permutations of letters a,b,c,d,e,f,g so that neither the pattern beg nor cad appears is											
	(a)	<u>7!</u>						(b)	$\frac{7!}{2!3!3!}$		
										·h	
	(c)	4806						(a)	None of t	inese	
Q15	Secre	If eleven members of a committee sit at a round table so that the President and Secretary always sit together, then the number of arrangements is									
	(a)	10! x 2						(b) (d)	10! 11! x 2!		
	(c)	9! X Z						(u)	11! X Z!		
Q16	In how many ways can 5 boys and 5 girls sit in a circle so that no two boys sit together?										
	(a)	5! X 5	!					(b)	4! X 5!		
	(c)	$\frac{5 \times 5!}{2}$						(d)	$\frac{(4!)\times(4!)}{2!}$	-	

Q17	The number of arrangements that can be made taking 4 letters, at a time, out of the letters of the word PASSPORT is								
	(a) (c)	606 666	(b) (d)	626 686					
Q18	8 The number of natural numbers smaller then 10 ⁴ of which all the digits are distinct are								
	(a) (c)	5000 5300	(b)	5200 5274					
Q19	92. (a) (c)	How many 8's are there between 1 to 1 301 299	000? (b) (d)	300 350					
Q20	How many numbers lying between 100 and 1000 can be formed with the digits 0, 1, 2, 3, 4, 5, if the repetition of the digits is not allowed?								
	(a) (c)	90 40	(b)	50 100					
Q21	The r	number of ways youcan find to pack 9 diff	erent b	ooks into five parcels if four					
	of the	parcels must contain two books each, is	;	·					
	(a)	945		${}^{9}C_{2} \times {}^{7}C_{2} \times {}^{5}C_{2} \times {}^{3}C_{2}$					
	(c)	${}^{9}C_{2} \times {}^{7}C_{2} \times {}^{5}C_{2} \times {}^{3}C_{2} \times 5!$	(d)	None of these					
Q22 beg r	Q22 The number of permutations of letters a,b,c,d,e,f,g so that neither the pattern beg nor cad appears is								
	(a)	<u>7!</u>	(b)	<u>7!</u>					
	(c)	3!3! 4806	(d)	2/3/3! None of these					
	(0)	4000	(u)	None of those					
Q23	Q23 If eleven members of a committee sit at a round table so that the President and Secretary always sit together, then the number of arrangements is								
	(a) (c)	10! x 2 9! x 2	(b) (d)	10! 11! x 2!					
			` ,						
Q24	In how	w many ways can 5 boys and 5 girls sit ir her?	ı a cırcl	e so that no two boys sit					
	(a)	5! X 5!	(b)	4! X 5!					
	(c)	$\frac{5 \times 5!}{2}$	(d)	$\frac{(4!)\times(4!)}{2!}$					
		<u>~</u>		∠ ;					

Q25	The number of arrangements that can be made taking 4 letters, at a time, out othe letters of the word PASSPORT is							
	(a) (c)	606 666			(b)	626 686		
Q26	The number of natural numbers smaller then 10 ⁴ of which all the digits are distinct are							
	(a)	5000			(b)	5200		
	(c)	5300			(d)	5274		